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Problem Solving
Art of Programming

Abstraction
Can you see the essential parts of the problem?
What are the outputs? inputs? their relationship?
Can you summerize the problem at a high level?
What are the different components of the solution?

Computational Thinking
Think like a computer.
What is the sequence of actions need to accomplish the
task?
Start with pseudocode.
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Thinking Like a Computer

Programming is like
Designing a Recipe
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Exercise
Calculating the area and circumference of a circle.

1 What are the inputs? outputs? their relationship?
2 Pseudocode it!
3 Code it!
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Explaining vs Tracing

Explaining
Summerize and provide a high-level explanation of what the
code does in plain English.

Tracing
Run the code as computer does.

Put pen to paper.
Write down the active variables and their values.
Update them as they change as you mentally walk through
the statements sequentially.
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TopHat Q1

Explain the Circle.java code:
a. Calculates the area and the circumference of a circle.
b. Reads a radius as input from the user and outputs the the

area and the circumference of the corresponding circle.
c. Creates a double variable called rad. Initializes it as 0.

Prompts the user for a radius and stores it in rad. Outputs
“Area:”; calculates the area of a circle of radius rad and
outputs it. Outputs “Circumference:”; calculates the
circumference of a circle of radius rad and outputs it.
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Tool for Tracing

Java Visualizer
https://cscircles.cemc.uwaterloo.ca/java_visualize/
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Edit

Writing some source code (set of instructions) in plain text.

Editors
Text Editors:

vi

Integrated Development Environment (IDE):
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Compile

Build your code so that it can be run on a computer.
Often compilers build an executable that can be run natively on
the target platform.

javac – The Java compiler

javac produces a bytecode file that needs to be run in a
virtual machine.
javac produces a bytecode file with a .class file extension.
Example:

javac Circle.java

produces a Circle.class bytecode file.
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Run

Run or execute your code.

java
The .class bytecode file produced by javac needs to be
run in the Java virtual machine.

Example:
java Circle

runs the Circle file.
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Virtual Machine

The Classic Model: Native executable

Source
Code

Machine
Code

(executable)

Compilation

The Java Model: Virtual Machine

Source
Code

Bytecode
foo.class

Virtual
Machine

Compilation
javac foo.java

Execution
java foo
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TopHat Q2

I have just written some Java code in a file SomeCode.java.
How do I compile and run it?

a. java SomeCode
b. javac SomeCode.class
c. javac SomeCode.java
d. java SomeCode.java
e. javac SomeCode
f. java SomeCode.class
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Java Initiation
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Basic Output

String Literals
Double quotes ("):
"I am a string literal"

Concatenation (+):
int a = 10; System.out.println("A " + a);

Newline escape character(\n):
"First line\nSecond line"

Printing to the Console
Print a string:
System.out.print("Does not append a new line");

Print a string with a newline:
System.out.println("Appends a new line");
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TopHat Q3

What is the output of:
System.out.println("5 and 5 = " + 5 + 5);

Type the output.
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Basic Input

Using the Scanner
Include the library at the top of the file:
import java.util.Scanner;

Create an instance of a Scanner object:
Scanner sc = new Scanner(System.in);

Reading an integer:
int anInt = sc.nextInt();
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Comments and Whitespace

Comments
Ignored by the compiler.
Written by the programmer to explain the code.
Single-line (//)
// Single line comment

Multi-line (/* */)
/**

* Multi-line comment

*/

Whitespace
Mostly ignored by the compiler.
Good use of white space makes code easier read!
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Compiler Errors and Warnings
Compilation Errors

Prevents compilation
Syntax errors

Examples:
missing ;

typo (variable name, keyword)
missing braces

Warnings

Warnings don’t stop the compilation process.
Good practice to write programs that compile without
warnings.
For even stricter compilation, use -Xlint:
javac -Xlint Foo.java
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Basic Machine Architecture

“This is a computer.”

von Neumann Architecture
von Neumann proposed this
architecture in 1945.
Consists of:

a processing unit,
memory,
input devices, and
output devices.
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Basic Machine Architecture

John von Neumann

von Neumann Architecture
von Neumann proposed this
architecture in 1945.
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a processing unit,
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Basic View of a Computer

Input
Device

Output
DeviceProcessor

Memory
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Further Reading

COMP SCI 200: Programming I
zyBooks.com, 2015.
zyBook code:
WISCCOMPSCI200Fall2019

Chapter 1. Programming Process
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Image Sources I

http://www.eclipse.org/

https:

//www.gnu.org/software/emacs/emacs.html

http://packerville.blogspot.ca/2010/05/

gentlemen-this-is-football.html

https:

//en.wikipedia.org/wiki/Microsoft_Notepad

http://2dvocabularynetwokr78.blogspot.fr/
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Image Sources II

http://www.lanl.gov/history/atomicbomb/

images/NeumannL.GIF

https://brand.wisc.edu/web/logos/

https://commons.wikimedia.org/w/index.php?

curid=1228427

https://commons.

wikimedia.org/w/index.php?curid=57649239

http://www.zybooks.com/
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